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LETTER TO THE EDITOR 

Resonances in bent quantum wires 

Igor F Herbut 
DepsrUnent of Physics and Asuonomy. Johns Hopkins University, Baltimore. MD 21218, 
USA 

Received 1 September 1993 

Abstract. We studied the problem of the bound state in a slightly bent two-dimensional quantum 
wire with the confining potential being an arbitrary function The problem is mapped b a 
panicle Hamillonian with a slowly varying cenpe of Ihe confining potential. For the class of 
even analytic potentials we proved ulat an arbitrary small bend will always produce a resonant 
state, but a !me bund state will be absent The energy of the resonant state is calculated to the 
lowest order in permrbation thmiy, for he case of the harmonic oscillator confining potential. 

In recent years, it has become possible to fabricate very narrow two-dimensional (ZO) layers 
which serve as confining geometries for propagation of electrons [ 11. If this kind of quantum 
wire is made sufficiently clean, the electron mean free path due to impurity scattering may 
become very long and the dominant scattering mechanism at low temperatures is interaction 
with surface imperfections and the edges of the sample. It has been shown that edges of 
these structures can bind electrons [U]. This represents a pumly quantum effect and the 
formation of the bound state is not due to the existence of the classically forbidden region of 
electron motion. Recently Goldstone and Jaffe [5] obtained a general result: an infinite tube 
of constant and arbitrary large cross-section, will always have a bound electron state in any 
dimension, as long as its curvature is not constant. Since it is known that the presence of a 
bound state below the continuum spectrum strongly affects conductance properties of these 
systems, and because the effect is intuitively surprising, it is interesting to devise different 
ways to address the problem. 

All the theoretical and experimental evidence [ 2 4 ]  presented so far in favour of the 
existence of the bound states due to the edges assumed Dirichlet boundary conditions, 
i.e. wavefunctions are required to vanish at the edges of the wire. To complement this 
formalism and study effects of more realistic boundary conditions, in this paper we formulate 
a perturbation theory for the problem of a 2D wire with a small dent. It is demonstrated 
that, to the lowest order in perturbation theory, the variational argument of Goldstone et a1 
[SI implies that the resonant state will exist at least for confining potential which is an even 
function of particle coordinate. We determined the electron propagator for the parricular 
choice of harmonic oscillator confining potential and calculated the energy of the resonance 
to the lowest order. It is found that the energy measured from the bottom of the lowest 
band is proportional to the -a4, where 6 is the introduced small parameter. This behaviour 
is distinct from all other cases of binding in ID or quasi-ID systems, and we argued that this 
is a general feature of bent wires. Then we found that the next-order term in the expansion 
of the Hamiltonian pushes all the states up in energy for the amount proportional to S2. 
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L608 Letter to the Editor 

F i r e  1. The ZD srrip with a small dent The shape of lhe edge determines the function f (x). 

This implies that there is no mly  bound state in the problem for an arbitrary weak bend, 
in stark contrast to the case of hard-walls boundary conditions. 

Consider a 2D strip of constant width, straight everywhere except in the bounded region 
with the 'dent' (figure 1). This is analogous to the case of a bent strip since the only 
perturbation of the electronic motion is again due to the change of curvature in some 
localized region of the strip. The idea is to describe the dent as a variation of the centre 
of the confining potential along the strip. We define the quantum mechanical problem with 
the Hamiltonian 

H I ~ I  = -m2/2m)(a,2 +a:) + V(Y c ~ ( X N  (1) 

where V(y) is a confining potential along y axis. The length scale implicit in V(y) 
determines the width of the strip. Expanding the Hamiltonian in powers of f ( x ) ,  to the 
lowest order one gets 

H[f(x)l= W O 1  + f ( x ) V ' ( y )  (2) 

where V'(g) = dVCy)/dy. We first study this approximate Hamiltonian. Note that the 
problem of strip with a bulge can be treated in similar way, where one would represent the 
bulge as a variation of the length scale of the confining potential [7]. To the lowest order in 
this variation the bulge would correspond to an attractive channelmixing ID potential and 
always produce a bound state. The present case of dent is rather different, since the sign of 
f ( x )  is left to our choice. Thus, it is not obvious that the simplified Hamiltonian defined 
by (2) would have a bound state for an arbitrary small perturbation f ( x ) .  

To demonstrate the existence of the bound state in the spectrum of Hamiltonian 
(2) we use the variational argument of Goldstone and Jaffe 151. We assume a smooth 
function f ( x )  which vanishes for 1x1 =- n. Take the variational ground state Y(x, y) = 
%(y) exp -A(lxl- xg) for 1x1 z a (regions I and III) and arbitrary for 1x1 < a (region II), 
where h > 0 is a variational parameter. State @po(y) is the normalized ground state of the 
confining potential, i.e. 

(-(h2/2m)a,z + V(Y))@O(Y) = Eo@o(y). 

We also assume W to be continuous and smooth everywhere. One is interested in finding 
a state for which the energy expectation value is below the ground state energy for non- 
perturbed Hamiltonian: 

EN'] = (('JIHl'J))/(WlW) < Eo. (3) 
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It is easy to calculate 

(YIHIY)=A+:+lY*HY. 

The second equation holds for any even function V ( y )  because 

since @o(y) has to be even and V'(y) odd function. Thus the inequality (3) is equivalent to 

We need to prove that a state exists for which {[e] > 0; then one can choose the parameter 
A such that I [ * ]  > A > 0 and satisfy the inequality (3). For the case of even confining 
potential, by taking %(x, y )  = @o(y) for 1x1 < U we get I[Yo] = 0. However, YO is not 
a stationary point of I [ * ]  since 

(7) H q o  = &Yo - ~ ( x ) V ' ( Y ) W O  # EoQo 

and the continuity of functional I [ q ]  implies that there exists a neighbourhood around q o  
in functional space where I [ * ]  > 0. 

The presented argument proves that there is a bound state in the problem defined by the 
Hamiltonian given in (2), but tells us very little about its energy. To address this question 
we take the simplest realization of the confining potential that is sure to produce a bound 
state: V ( y )  = mo2yZ/2. It is convenient to rewrite the Hamiltonian (2) in second-quantized 
form as 

where f ( q )  is a Fourier transform of f(y), er = frzk2/2m and En = hw(n + 1/2) 
Vn.m = ~ 0 / 1 2 ' ~ ~ ) ( m ' / ~ 6 . , ~ - ~  + (m + l)1/z6e,m+l) for our choice of harmonic oscillator 
confining potential. The width of the strip is determined by the,length 1 = (h/mw)'/'. The 
matrix equation for the particle's Green function is 

where the free propagator is G f ( p ;  E) = ( E  - (e, + E.) + iq)-'. To simplify calculations 
we assume an infinitely short-ranged perturbation f(y) = f S ( y ) .  The momentum-diagonal 
part of the particle's Green function may then be expressed as 

(10) 

where the transfer matrix is given by f = (f/L)(l - ( f / L ) i ( ~ ) ) - l P ,  A, , j (c )  = V,, jgj(c) ,  
gj(6) = E, Gj(q;  E ) ,  and L is the length of the strip. The energy of the bound state is 
determined by the position of the pole of the transfer matrix, i.e. 

(11) 

0 G n , m ( P ;  6 )  = G,(P; ~ ) S n . m  + G:(P; E ) T n . m ( E ) G L ( P ;  E )  

det[i - ( f / L ) i ( c ) ]  = 0. 
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Matrix f - ( f /L)A^(e)  i s  an infinite hidiagonal matrix and equation (11) is practically 
unsolvable. However, we recall that our method is consistent only to the lowest order in 
f, and the determinant in equation (1 1) may then be expanded as 

and 

for e < Eo. Since the bound state energy measured from the boaom of the lowest band is 
proportional to f, to obtain its leading order behaviour it suffices to keep only the first term 
in the sum in the last equation. Parameter f has a dimension of (length)’ and we inmodwe 
a small number 6 = fluz. The bound state energy can now be written to the lowest order 
in small 6 as 

6 Y Eo - S4hw. (13) 

The reader should note that the energy of the bound state of the first-order Hamiltonian 
(2) when measured from EO is proportional to S4 which tells us that the state is very weakly 
bound. This, for instance, should be contrasted with the case of a bulge in the strip, where 
one obtains the same energy to be E a 6’, which is the typical dependence of the bound 
state energy on combination (depthxwidth) of the potential well in ID. As a consequence, 
evep if the expression (2) was the full Hamiltonian, the bound state would be localized on 
the length scale A a which is long for small 6. For a finite range function f (y) we 
believe that the leading 64 dependence of the bound state energy will persist The only 
difference is that parameter f will be replaced by the product of lengths that determine 
width and depth of the dent 

This result is in qualitative agreement with the calculations for the slightly bent 2D strip 
of Goldstone et a/ [5]. The authors studied the limit when the angle of the bend a 4 0 
and the radius of the bend curvature r + CQ, and obtained the energy E CL a’r-’. Also 
the numerical calculations of Carini et a/ [6] show that the resonant state energy versus 
bend angle c w e  is very flat for small angles. Even though the geometry of their setup 
is different than in the case we studied (sharp edges at the place of the bend, Dirichlet 
boundary conditions) it seems that treating 6 as a phenomenological parameter linearly 
related to the bend angle one can fit their numerical data. The choice of 6 = 0.017a. where 
a is a bend angle measured in degrees, fits their curve well for c1 c 30”. This is somewhat 
ambiguous, however, because the energies in question are small and hard to read from their 
graph. Still, this gives us reason to believe that our conclusions are. not very sensitive to 
the exact geometry of the bend nor to the type of the confining potential. 

Let us now include the next-order term in the expansion (2). For the potential 
V(y) rx Yz” it is proportional to yh-’ f 2 ( x ) .  Since it is positive and even in y it will 
increase the energies of all states for the amount proportional to Sz.  Hence, for an arbitrary 
small bend there wifl be no true bound state, but only a resonance. For a non-analytic 
potential V ( y )  our argument fails, and indeed Goldstone and Jaffe [5] have proved the 
existence of a true bound state in the case of hard walls. 

To summarize, we have proved the existence of a resonant state in zD quantum wires 
due to a small dent, for the class of even analytic confining potentials. We calculated 
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the energy of the resonance using perturbation theory for the case of harmonic oscillator 
confining potential. It has been shown that the resonant state energy lies above the bottom 
of the lowest non-perturbed band, for small bend. Thus there. is no m e  bound state, in 
contrast to the case of Dirichlet boundary conditions. 

The author thanks Professor Zlatko TeSanoviC for pointing out the problem of the bent 
quantum wire to him and for numerous useful discussions. This work has been supported 
in part by the David and Lucile Packard Foundation. 
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